ERLANG

Simple Network Management Protocol
(SNMP)

Copyright © 1997-2021 Ericsson AB. All Rights Reserved.
Simple Network Management Protocol (SNMP) 5.10.1
November 22, 2021

Copyright © 1997-2021 Ericsson AB. All Rights Reserved.

Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance
with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless
required by applicable law or agreed to in writing, software distributed under the License is distributed on an
"AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See

the License for the specific language governing permissions and limitations under the License. Ericsson AB. All
Rights Reserved..

November 22, 2021

1.1 SNMP Introduction

1 SNMP User's Guide

A multilingual Simple Network Management Protocol application, featuring an Extensible Agent, a simple manager
and aMIB compiler and facilities for implementing SNMP MIBs etc.

1.1 SNMP Introduction

The SNMP devel opment toolkit contains the following parts:

e An Extensible multi-lingual SNMP agent, which understands SNMPv1 (RFC1157), SNMPv2c (RFC1901,
1905, 1906 and 1907), SNMPv3 (RFC2271, 2272, 2273, 2274 and 2275), or any combination of these
protocols.

e A multi-lingual SNMP manager.

e A MIB compiler, which understands SMIv1 (RFC1155, 1212, and 1215) and SMIv2 (RFC1902, 1903, and
1904).

The SNMP development tool provides an environment for rapid agent/manager prototyping and construction. With
the following information provided, thistool is used to set up a running multi-lingual SNMP agent/manager:

* adescription of a Management Information Base (MIB) in Abstract Syntax Notation One (ASN.1)
e instrumentation functions for the managed objectsin the MIB, written in Erlang.

The advantage of using an extensible (agent/manager) toolkit isto remove details such astype-checking, accessrights,
Protocol Data Unit (PDU), encoding, decoding, and trap distribution from the programmer, who only has to write
the instrumentation functions, which implement the MIBs. The get - next function only has to be implemented for
tables, and not for every variable in the global naming tree. This information can be deduced from the ASN.1 file.

1.1.1 Scope and Purpose

This manual describes the SNMP development tool, as a component of the Erlang/Open Telecom Platform
development environment. It is assumed that the reader is familiar with the Erlang Development Environment, which
is described in a separate User's Guide.

1.1.2 Prerequisites
The following prerequisitesis required for understanding the material in the SNMP User's Guide:

» thebasics of the Simple Network Management Protocol version 1 (SNMPv1)

» thebasics of the community-based Simple Network Management Protocol version 2 (SNMPv2c)
» thebasics of the Simple Network Management Protocol version 3 (SNMPv3)

» theknowledge of defining MIBsusing SMIv1 and SMIv2

» familiarity with the Erlang system and Erlang programming

The tool requires Erlang release 4.7 or later.

1.1.3 Definitions
The following definitions are used in the SNMP User's Guide.

Ericsson AB. All Rights Reserved.: Simple Network Management Protocol (SNMP) | 1

1.1 SNMP Introduction

MIB
The conceptual repository for management information is called the Management Information Base (MIB).
It does not hold any data, merely a definition of what data can be accessed. A definition of an MIB isa
description of a collection of managed objects.

SMI
The MIB is specified in an adapted subset of the Abstract Syntax Notation One (ASN.1) language. This
adapted subset is called the Structure of Management Information (SMI).

ASN.1
ASN.1isused in two different waysin SNMP. The SMI is based on ASN.1, and the messages in the protocol
are defined by using ASN.1.

Managed object

A resource to be managed is represented by a managed object, which resides in the MIB. In an SNMP MIB, the
managed objects are either:

« scalar variables, which have only one instance per context. They have single values, not multiple values
like vectors or structures.
» tables, which can grow dynamically.
e atableeement, whichisaspecia type of scalar variable.
Operations
SNMP relies on the three basic operations: get (object), set (object, value) and get-next (object).
Instrumentation function
An instrumentation function is associated with each managed object. Thisis the function, which actually
implements the operations and will be called by the agent when it receives arequest from the management
station.
Manager
A manager generates commands and receives notifications from agents. There usually are only afew managers
in asystem.
Agent
An agent responds to commands from the manager, and sends notification to the manager. There are potentially
many agentsin a system.

1.1.4 About This Manual

In addition to this introductory chapter, the SNMP User's Guide contains the following chapters:

e Chapter 2: "Functional Description" describes the features and operation of the SNMP development toolkit. It
includes topics on Sub-agents and MIB loading, Internal MIBs, and Traps.

e Chapter 3: "The MIB Compiler" describes the features and the operation of the MIB compiler.

» Chapter 4: "Running the application” describes how to start and configure the application. Topics on how to
debug the application are also included.

« Chapter 5: "Definition of Agent Configuration Files" is areference chapter, which contains more detailed
information about the agent configuration files.

* Chapter 6: "Definition of Manager Configuration Files" is areference chapter, which contains more detailed
information about the manager configuration files.

e Chapter 7: "Agent Implementation Example" describes how an MIB can be implemented with the SNMP
Development Toolkit. Implementation examples are included.

* Chapter 8: "Instrumentation Functions" describes how instrumentation functions should be defined in Erlang for
the different operations.

e Chapter 9: "Definition of Instrumentation Functions" is areference chapter which contains more detailed
information about the instrumentation functions.

2 | Ericsson AB. All Rights Reserved.: Simple Network Management Protocol (SNMP)

1.2 Agent Functional Description

» Chapter 10: "Definition of Agent Net if" is areference chapter, which describes the Agent Net if function in
detail.

e Chapter 11: "Definition of Manager Net if" is a reference chapter, which describes the Manager Net if function
in detail.

e Chapter 12: "Advanced Agent Topics' describes sub-agents, agent semantics, audit trail logging, and the
consideration of distributed tables.

* Appendix A describes the conversion of SNMPv2 to SNMPv1 error messages.

* Appendix B contains the RFC1903 text on RowSt at us.

1.1.5 Where to Find More Information

Refer to the following documentation for more information about SNMP and about the Erlang/OTP devel opment
system:

e Marshal T. Rose (1991), "The Simple Book - An Introduction to Internet Management”, Prentice-Hall
e Evan McGinnis and David Perkins (1997), "Understanding SNMP MIBs", Prentice-Hall

e RFC1155, 1157, 1212 and 1215 (SNMPv1)

* RFC1901-1907 (SNMPv2c)

e RFC1908, 2089 (coexistence between SNMPv1 and SNMPv2)

 RFC2271, RFC2273 (SNMP std MIBs)

e theMnesiaUser's Guide

* theErlang 4.4 Extensions User's Guide

» the Reference Manua

* the Erlang Embedded Systems User's Guide

« the System Architecture Support Libraries (SASL) User's Guide

e thelnstallation Guide

e theAsnl User's Guide

e Concurrent Programming in Erlang, 2nd Edition (1996), Prentice-Hall, ISBN 0-13-508301-X.

1.2 Agent Functional Description

The SNMP agent system consists of one Master Agent and optional Sub-agents.

The tool makes it easy to dynamically extend an SNMP agent in run-time. M1Bs can be loaded and unloaded at any
time. It is also easy to change the implementation of an MIB in run-time, without having to recompile the MIB. The
MIB implementation is clearly separated from the agent.

To facilitate incremental MI1B implementation, the tool can generate a prototype implementation for awhole MIB, or
parts thereof. This allows different MIBs and management applications to be developed at the same time.

1.2.1 Features

To implement an agent, the programmer writes instrumentation functions for the variables and the tablesin the MIBs
that the agent is going to support. A running prototype which handles set , get, and get - next can be created
without any programming.

The toolkit provides the following:

e multi-lingual multi-threaded extensible SNMP agent
e easy writing of instrumentation functions with a high-level programming language
» basic fault handling such as automatic type checking

Ericsson AB. All Rights Reserved.: Simple Network Management Protocol (SNMP) | 3

1.2 Agent Functional Description

* access control

+ authentication

e privacy through encryption

* loading and unloading of MIBsin run-time

» theability to change instrumentation functions without recompiling the MIB

* rapid prototyping environment where the MIB compiler can use generic instrumentation functions, which later
can be refined by the programmer

e asimpleand extensible model for transaction handling and consistency checking of set-requests
» support of the sub-agent concept via distributed Erlang

e amechanism for sending natifications (traps and informs)

e support for implementing SNMP tables in the Mnesia DBMS.

1.2.2 SNMPv1, SNMPv2 and SNMPv3

The SNM P devel opment tool kit workswith all three versions of Standard | nternet Management Framework; SNMPv1,
SNMPv2 and SNMPv3. They all share the same basic structure and components. And they follow the same
architecture.

The versions are defined in following RFCs

* SNMPv1 RFC 1555, 1157 1212, 1213 and 1215

* SNMPv2 RFC 1902 - 1907

* SNMPv3 RFC 2570 - 2575

Over time, as the Framework has evolved from SNMPv1 , through SNMPv2, to SNMPv3 the definitions of each of

these architectural components have become richer and more clearly defined, but the fundamental architecture has
remained consistent.

The main features of SNMPv2 compared to SNMPv1 are;

e Theget - bul k operation for transferring large amounts of data.

* Enhanced error codes.

* A more precise language for MIB specification

The standard documents that define SNMPv2 are incomplete, in the sense that they do not specify how an SNMPv2
message looks like. The message format and security issues are left to a special Administrative Framework. One

such framework isthe Community-based SNMPv2 Framework (SNM Pv2c), which uses the same message format and
framework as SNMPv1. Other experimental frameworks as exist, e.g. SNMPv2u and SNMPv2*,

The SNM Pv3 specifications take a modular approach to SNMP. All modules are separated from each other, and can
be extended or replaced individually. Examples of modules are M essage definition, Security and Access Control. The
main features of SNMPv3 are:

» Encryption and authentication is added.

» MIBsfor agent configuration are defined.

All these specifications are commonly referred to as "SNMPv3", but it is actually only the Message module, which
defines a new message format, and Security module, which takes care of encryption and authentication, that cannot
be used with SNMPv1 or SNMPv2c. In thisversion of the agent toolkit, all the standard MIBsfor agent configuration
are used. Thisincludes MIBs for definition of management targets for notifications. These MIBs are used regardless
of which SNMP version the agent is configured to use.

The extensible agent in this toolkit understands the SNMPv1, SNMPv2c and SNMPv3. Recall that SNMP consists
of two separate parts, the MIB definition language (SMI), and the protocol. On the protocol level, the agent can be
configured to speak v1, v2c, v3 or any combination of them at the same time, i.e. av1 request gets an v1 reply, av2c

4 | Ericsson AB. All Rights Reserved.: Simple Network Management Protocol (SNMP)

1.2 Agent Functional Description

request getsav2c reply, and av3 request getsav3 reply. Onthe MIB level, the MIB compiler can compile both SM1v1
and SMIv2 MIBs. Once compiled, any of the formats can beloaded into the agent, regardl ess of which protocol version
the agent is configured to use. This means that the agent translates from v2 notifications to v1 traps, and vice versa.
For example, v2 MIBs can be loaded into an agent that speaks v1 only. The procedures for the tranglation between
the two protocols are described in RFC 1908 and RFC 2089.

In order for an implementation to make full use of the enhanced SNMPv2 error codes, it is essential that the
instrumentation functions always return SNMPv2 error codes, in case of error. These are trandated into the
corresponding SNMPv1 error codes by the agent, if necessary.

The trandation from an SMIvl MIB to an SNMPv2c or SNMPv3 reply is always very straightforward, but
the trandation from a v2 MIB to a v1 reply is somewhat more complicated. There is one data type in SMIv2,
called Count er 64, that an SNMPv1 manager cannot decode correctly. Therefore, an agent may never send a
Count er 64 object to an SNMPv1 manager. The common practice in these situations is to simple ignore any
Count er 64 objects, when sending areply or atrap to an SNMPv1 manager. For example, if an SNMPv1 manager
triesto GET an object of type Count er 64, hewill get anoSuchNane error, while an SNMPv2 manager would
get acorrect value.

1.2.3 Operation

The following steps are needed to get a running agent:

e Writeyour MIB in SMI in atext file.

e Write the instrumentation functions in Erlang and compile them.

e Put their namesin the association file.

* Runthe MIB together with the association file through the MIB compiler.
e Configure the application (agent).

* Start the application (agent).

e Load the compiled MIB into the agent.

Thefiguresin this section illustrate the steps involved in the development of an SNMP agent.

MIB in ASN.1 file.mity
eyaContact OBJECT-TYPE Association file file.funcs
SYMTAX DisplayString isysContact, [mymod, sysCFung, [1}).
MIE
Compiler

EBimary| file.bin
Representation
Figure 2.1: MIB Compiler Principles

Ericsson AB. All Rights Reserved.: Simple Network Management Protocol (SNMP) | 5

1.2 Agent Functional Description

The compiler parsesthe SMI file and associ ates each table or variable with an instrumentation function (see the figure
MIB Compiler Principles). The actual instrumentation functionsare not needed at MIB compiletime, only their names.

Thebinary output file produced by the compiler isread by the agent at M1B load time (seethefigure Starting the Agent).
The instrumentation is ordinary Erlang code which isloaded explicitly or automatically the first timeit is called.

Instrumentation mymod. beam
sysCPFunciget, ...] -=
< Ccodex;
Binary | file.bin aysCFunci{set, ...) -»
Fepresentation <codex,

Figure 2.2: Starting the Agent

The SNMP agent system consists of one Master Agent and optional sub-agents. The Master Agent can be seen as a
special kind of sub-agent. It implements the core agent functionality, UDP packet processing, type checking, access
control, trap distribution, and so on. From a user perspective, it isused as an ordinary sub-agent.

Sub-agents are only needed if your application requires special support for distribution from the SNMP toolkit. A
sub-agent can also be used if the application requires a more complex set transaction scheme than is found in the

master agent.
The following illustration shows how a system can look in runtime.

6 | Ericsson AB. All Rights Reserved.: Simple Network Management Protocol (SNMP)

1.2 Agent Functional Description

_ _Node3d _
Node 1 | !
------------- T I Appl, !
Appl | B '
1 Appl. | :

Standard

FJ
///p
'//'wg_
&

e
|
= |

o
oo

i
R
1 I

U ——— |

/r
Erl Erl
Mle ' T“g Distributed Erlang r Elmg

Metwork
Figure 2.3: Architecture

A typical operation could include the following steps:

e The Manager sends arequest to the Agent.
e The Master Agent decodes the incoming UDP packet.

e The Master Agent determines which items in the request that should be processed here and which items should
be forwarded to its subagent.

e Step 3isrepeated by al subagents.

» Each sub-agent calls the instrumentation for its loaded MIBs.

« Theresults of calling the instrumentation are propagated back to the Master Agent.

» Theanswer to the request is encoded to a UDP Protocol Data Unit (PDU).

The sequence of steps shown is probably more complex than normal, but it illustrates the amount of functionality
which is available. The following points should be noted:

e An agent can have many MIBs loaded at the same time.

» Sub-agents can a so have sub-agents. Each sub-agent can have an arbitrary number of child sub-agents
registered, forming a hierarchy.

e OneMIB can communicate with many applications.
e Instrumentation can use Distributed Erlang to communicate with an application.

Most applications only need the Master Agent because an agent can have multiple MIBs loaded at the same time.

Ericsson AB. All Rights Reserved.: Simple Network Management Protocol (SNMP) | 7

1.2 Agent Functional Description

1.2.4 Sub-agents and MIB Loading

Since applications tend to be transient (they are dynamically loaded and unloaded), the management of these
applications must be dynamic as well. For example, if we have an equipment MIB for arack and different MIBs for
boards, which can beinstalled in the rack, the MIB for acard should be loaded when the card isinserted, and unloaded
when the card is removed.

In this agent system, there are two ways to dynamicaly install management information. The most common way
isto load an MIB into an agent. The other way is to use a sub-agent, which is controlled by the application and is
able to register and unregister itself. A sub-agent can register itself for managing a sub-tree (not to be mixed up with
erl ang: r egi st er). The sub-tree is identified by an Object Identifier. When a sub-agent is registered, it receives
all requests for this particular sub-tree and it is responsible for answering them. It should also be noted that a sub-
agent can be started and stopped at any time.

Compared to other SNMP agent packages, there is a significant difference in this way of using sub-agents. Other
packages hormally use sub-agents to load and unload MIBsin run-time. In Erlang, it is easy to load code in run-time
and it is possible to load an MIB into an existing sub-agent. It is not necessary to create a new process for handling
anew MIB.

Sub-agents are used for the following reasons:

* to provide amore complex set-transaction scheme than master agent

e toavoid unnecessary process communication

e to provide amore lightweight mechanism for loading and unloading MIBs in run-time
* to provide interaction with other SNMP agent toolkits.

Refer to the chapter Advanced Agent Topicsin this User's Guide for more information about these topics.

The communication protocol between sub-agents is the normal message passing which is used in distributed Erlang
systems. Thisimplies that sub-agent communication is very efficient compared to SMUX, DPI, AgentX, and similar
protocols.

1.2.5 Contexts and Communities

A context is a collection of management information accessible by an SNMP entity. An instance of a management
object may exist in more than one context. An SNMP entity potentially has access to many contexts.

Each managed object can exist in many instanceswithin a SNMP entity. To identify theinstances, specified by an MIB
module, a method to distinguish the actual instance by its 'scope’ or context is used. Often the context is a physical or
alogica device. It can include multiple devices, a subset of a single device or a subset of multiple devices, but the
context is always defined as a subset of a single SNMP entity. To be able to identify a specific item of management
information within an SNMP entity, the context, the object type and its instance must be used.

For example, the managed object type i f Descr from RFC1573, is defined as the description of a network
interface. To identify the description of device-X's first network interface, four pieces of information are needed:
the snmpEnginelD of the SNMP entity which provides access to the management information at device-X, the
cont ext Nane (device-X), the managed object type (i f Descr), and theinstance ("1").

In SNMPv1 and SNMPv2c, the community string in the message was used for (at least) three different purposes:

e toidentify the context

* to provide authentication

e toidentify aset of trap targets

In SNMPv3, each of these usage areas has its own unique mechanism. A context is identified by the name of the

SNMP entity, cont ext Engi nel D, and the name of the context, cont ext Nare. Each SNM Pv3 message contains
values for these two parameters.

8 | Ericsson AB. All Rights Reserved.: Simple Network Management Protocol (SNMP)

1.2 Agent Functional Description

There is a MIB, SNMP-COMMUNITY-MIB, which maps a community string to a cont ext Engi nel D and
cont ext Name. Thus, each message, an SNMPv1, SNMPv2c or an SNMPv3 message, always uniquely identifies
a context.

For an agent, the cont ext Engi nel Didentified by a received message, is always equal to the snnpEngi nel D
of the agent. Otherwise, the message was not intended for the agent. If the agent is configured with more than one
context, the instrumentation code must be able to figure out for which context the request was intended. There is a
function snipa: cur r ent _cont ext / O provided for this purpose.

By default, the agent has no knowledge of any other contexts than the default context, " " . If it is to support more
contexts, these must be explicitly added, by using an appropriate configuration file Agent Configuration Files.

1.2.6 Management of the Agent

Thereis aset of standard MIBs, which are used to control and configure an SNMP agent. All of these MIBs, with the
exception of the optional SNMP-PROXY -MIB (which is only used for proxy agents), are implemented in this agent.
Further, it is configurable which of these MIBs are actually loaded, and thus made visible to SNMP managers. For
example, in a non-secure environment, it might be a good idea to not make MIBs that define access control visible.
Note, the datathe MIBs define is used internally in the agent, even if the MIBs not are |oaded. This chapter describes
these standard M1Bs, and some aspects of their implementation.

Any SNMP agent must implement the sy st emgroup and thesnnp group, defined in MIB-I1. The definitions of these
groups have changed from SNMPv1 to SNMPv2. MIBsand implementationsfor both of these versionsare Provided in
the distribution. The MIB file for SNMPv1iscaled STANDARD-MIB, and the corresponding for SNMPv2 is called
SNMPv2-MIB. If the agent is configured for SNMPv1 only, the STANDARD-MIB is loaded by default; otherwise,
the SNMPv2-MIB is loaded by default. It is possible to override this default behavior, by explicitly loading another
version of this MIB, for example, you could choose to implement the union of all objectsin these two MIBs.

An SNMPv3 agent must implement the SNMP-FRAMEWORK-MIB and SNMP-MPD-MIB. These MIBs are loaded
by default, if the agent is configured for SNMPv3. These MIBs can be loaded for other versions as well.

There are five other standard MIBs, which also may be loaded into the agent. These MIBs are:

* SNMP-TARGET-MIB and SNMP-NOTIFICATION-MIB, which defines managed objects for configuration of
management targets, i.e. receivers of notifications (traps and informs). These MIBs can be used with any SNMP
version.

« SNMP-VIEW-BASED-ACM-MIB, which defined managed objects for access control. This MIB can be used
with any SNMP version.

e SNMP-COMMUNITY-MIB, which defines managed objects for coexistence of SNMPv1 and SNMPv2c with
SNMPv3. ThisMIB isonly useful if SNMPv1 or SNMPv2c is used, possibly in combination with SNMPv3.

* SNMP-USER-BASED-SM-MIB, which defines managed objects for authentication and privacy. This MIB is
only useful with SNMPv3.

All of these MIBs should beloaded into the M aster Agent. Onceloaded, these MIBsareawaysavailablein all contexts.

The ASN.1 code, the Erlang source code, and the generated . hr | filesfor them are provided in the distribution and
are placed in the directoriesm bs, src,andi ncl ude, respectively, in the snnp application.

The. hr| files are generated with snnpc: mi b_to_hrl/ 1. Include these files in your code as in the following
example:

-include lib("snmp/include/SNMPv2-MIB.hrl").

Theinitial valuesfor the managed objects defined in these tables, are read at start-up from a set of configuration files.
These are described in Configuration Files.

Ericsson AB. All Rights Reserved.: Simple Network Management Protocol (SNMP) | 9

1.2 Agent Functional Description

STANDARD-MIB and SNMPv2-MIB

These MIBs containthesnp- and sy st emgroupsfrom MIB-11 whichisdefined in RFC1213 (STANDARD-MIB)
or RFC1907 (SNMPv2-MIB). They are implemented in the snnp_st andar d_ni b module. The snnp counters
all reside in volatile memory and the syst emand snnpEnabl eAut henTr aps variables in persistent memory,
using the SNMP built-in database (refer to the Reference Manual, section snnp, module snnpa_| ocal _db for
more details).

If another implementation of any of these variablesisneeded, e.g. to storethe persistent variablesin aMnesia database,
an own implementation of the variables must be made. That MIB will be compiled and loaded instead of the default
MIB. The new compiled MIB must have the same name as the original MIB (i.e. STANDARD-MIB or SNMPv2-
MIB), and be located in the SNMP configuration directory (see Configuration Files.)

One of these MIBsisawaysloaded. If only SNMPv1 isused, STANDARD-MIB isloaded, otherwise SNMPv2-MIB
isloaded.

Data Types

There are some new data typesin SNMPv2 that are useful in SNMPv1 as well. In the STANDARD-MIB, three data
typesaredefined, RowSt at us, Tr ut hVal ue and Dat e AndTi e. Thesedatatypesareoriginaly defined astextual
conventionsin SNMPv2-TC (RFC1903).

SNMP-FRAMEWORK-MIB and SNMP-MPD-MIB

The SNMP-FRAMEWORK-MIB and SNMP-MPD-MIB define additional read-only managed objects, which is used
in the generic SNMP framework defined in RFC2271 and the generic message processing and dispatching module
defined in RFC2272. They are generic in the sense that they are not tied to any specific SNMP version.

The objectsin these MIBs are implemented in the modulessnnp_f r anewor k_m b andsnnp_st andar d_ni b,
respectively. All objects reside in volatile memory, and the configuration files are always reread at start-up.

If SNMPv3is used, these MIBs are loaded by defaullt.

SNMP-TARGET-MIB and SNMP-NOTIFICATION-MIB

The SNMP-TARGET-MIB and SNMP-NOTIFICATION-MIB define managed objects for configuration of
notification receivers. They are described in detail in RFC2273. Only a brief description is given here.

All tables in these MIBs have a column of type St or ageType. The value of this column specifies how each row
is stored, and what happens in case of a restart of the agent. The implementation supports the values vol ati | e
and nonVol ati | e. When the tables are initially filled with data from the configuration files, these rows will
automatically havestoragetypenonVol at i | e. Shouldtheagent restart, all nonVol at i | e rowssurvivetherestart,
whilethevol ati | e rowsarelost. The configuration files are not read at restart, by default.

These MIBs are not loaded by default.
snmpNotifyTable

An entry in the snnpNot i f yTabl e selects a set of management targets, which should receive notifications, as
well as the type (trap or inform) of notification that should be sent to each selected management target. When an
application sends a notification using the function send_noti fi cation/5 or the function send_t r ap the
parameter Not i f yName, specified in the call, is used as an index in the table. The notification is sent to the
management targets selected by that entry.

snmpTargetAddrTable

An entry in the snnpTar get Addr Tabl e defines transport parameters (such as IP address and UDP
port) for each management target. Each row in the snnpNot i f yTabl e refers to potentialy many rows
in the snnpTar get Addr Tabl e. Each row in the snnpTar get Addr Tabl e refers to an entry in the
snnpTar get Par ansTabl e.

10 | Ericsson AB. All Rights Reserved.: Simple Network Management Protocol (SNMP)

1.2 Agent Functional Description

snmpTargetParamsTable

An entry in the snnpTar get Par anms Tabl e defines which SNMP version to use, and which security parameters
to use.

Which SNMP version to use is implicitly defined by specifying the Message Processing Model. This version of the
agent handles the modelsv1, v2c andv3.

Each row specifies which security model to use, along with security level and security parameters.

SNMP-VIEW-BASED-ACM-MIB

The SNMP-VIEW-BASED-ACM-MIB defines managed objects to control access to the the managed objects for the
managers. The View Based Access Control Module (VACM) can be used with any SNMP version. However, if it
is used with SNMPv1 or SNMPv2c, the SNMP-COMMUNITY -MIB defines additional objects to map community
stringsto VACM parameters.

All tables in this MIB have a column of type St or ageType. The value of this column specifies how each row
is stored, and what happens in case of arestart of the agent. The implementation supports the values vol ati | e
and nonVol ati | e. When the tables are initially filled with data from the configuration files, these rows will
automatically have storagetypenonVol at i | e. Shouldtheagent restart, all nonVol at i | e rowssurvivetherestart,
whilethevol at i | e rowsarelost. The configuration files are not read at restart by default.

ThisMIB is not loaded by default.
VACM isdescribed in detail in RFC2275. Hereis only abrief description given.

The basic concept is that of a MIB view. An MIB view is a subset of all the objects implemented by an agent. A
manager has access to a certain MIB view, depending on which security parameters are used, in which context the
request is made, and which type of request is made.

The following picture gives an overview of the mechanism to select an MIB view:

securityhd odel

who groupMame
securityMame

where contexaMare

viewMame

secuityhd odel

who
secmitylevel

why view Type (readferrite/notify)

Figure 2.4: Overview of the mechanism of MIB selection

Ericsson AB. All Rights Reserved.: Simple Network Management Protocol (SNMP) | 11

1.2 Agent Functional Description

vacmContextTable

ThevacntCont ext Tabl e isaread-only table that lists al available contexts.
vacmSecurityToGroupTable

ThevacnBSecurityToG oupTabl e mapsasecurityMdel andasecurityNane toagroupNane.
vacmAccessTable

ThevacmAccessTabl e mapsthe gr oupNane (foundinvacnBSecurit yToG oupTabl e), cont ext Nane,
securityModel ,andsecuritylLevel toan MIB view for each type of operation (read, write, or notify). The
MIB view is represented as avi ewNane. The definition of the MIB view represented by the vi ewNane is found
inthevacnVi ewTr eeFami | yTabl e

vacmViewTreeFamilyTable

ThevacnmVi ewTr eeFam | yTabl e isindexed by the vi ewNane, and defines which objects are included in the
MIB view.

The MIB definition for the table |ooks as follows:

VacmViewTreeFamilyEntry ::= SEQUENCE

{
vacmViewTreeFamilyViewName SnmpAdminString,
vacmViewTreeFamilySubtree OBJECT IDENTIFIER,
vacmViewTreeFamilyMask OCTET STRING,
vacmViewTreeFamilyType INTEGER,
vacmViewTreeFamilyStorageType StorageType,
vacmViewTreeFamilyStatus RowStatus

}

INDEX { vacmViewTreeFamilyViewName,
vacmViewTreeFamilySubtree

}

EachvacnVi ewTr eeFani | yVi ewNane refersto a collection of sub-trees.
MIB View Semantics

AnMIB view isacollection of included and excluded sub-trees. A sub-treeisidentified by an OBJECT IDENTIFIER.
A mask is associated with each sub-tree.

For each possible MIB object instance, the instance belongs to a sub-tree if:

e the OBJECT IDENTIFIER name of that MIB object instance comprises at least as many sub-identifiers as does
the sub-tree, and

» each sub-identifier in the name of that MIB object instance matches the corresponding sub-identifier of the sub-
tree whenever the corresponding bit of the associated mask is 1 (0 isawild card that matches anything).

Membership of an object instancein an MIB view is determined by the following algorithm:

« |f an MIB object instance does not belong to any of the relevant sub-trees, then the instance is not in the MIB
view.

« |f an MIB object instance belongs to exactly one sub-tree, then the instanceis included in, or excluded from, the
relevant MIB view according to the type of that entry.

« |f an MIB object instance belongs to more than one sub-tree, then the sub-tree which comprises the greatest
number of sub-identifiers, and is the lexicographically greatest, is used.

12 | Ericsson AB. All Rights Reserved.: Simple Network Management Protocol (SNMP)

1.2 Agent Functional Description

If the OBJECT IDENTIFIER is longer than an OBJECT IDENTIFIER of an object type in the MIB, it refers to
object instances. Because of this, it is possible to control whether or not particular rowsin atable shall be visible.

SNMP-COMMUNITY-MIB

The SNMP-COMMUNITY-MIB defines managed objects that is used for coexistence between SNMPv1 and
SNMPv2c with SNMPv3. Specifically, it contains objects for mapping between community strings and version-
independent SNM P message parameters. In addition, this MIB provides a mechanism for performing source address
validation on incoming requests, and for selecting community strings based on target addresses for outgoing
notifications.

All tables in this MIB have a column of type St or ageType. The value of this column specifies how each row
is stored, and what happens in case of arestart of the agent. The implementation supports the values vol ati | e
and nonVol ati | e. When the tables are initially filled with data from the configuration files, these rows will
automatically have storagetypenonVol at i | e. Shouldtheagent restart, all nonVol at i | e rowssurvivetherestart,
whilethevol ati | e rowsarelost. The configuration files are not read at restart, by default.

This MIB is not loaded by defauilt.

SNMP-USER-BASED-SM-MIB
The SNMP-USER-BASED-SM-MIB defines managed objects that is used for the User-Based Security Model.

All tables in this MIB have a column of type St or ageType. The value of the column specifies how each row
is stored, and what happens in case of arestart of the agent. The implementation supports the values vol ati | e
and nonVol at i | e. When the tables are initially filled with data from the configuration files, these rows will
automatically have storagetypenonVol at i | e. Shouldtheagent restart, all nonVol at i | e rowssurvivetherestart,
whilethevol ati | e rowsarelost. The configuration files are not read at restart, by default.

This MIB is not loaded by defaullt.

OTP-SNMPEA-MIB

The OTP-SNMPEA-MIB was used in earlier versions of the agent, before standard MIBs existed for access control,
MIB views, and trap target specification. All objectsin this MIB are now obsolete.

1.2.7 Notifications

Notifications are defined in SMIv1 with the TRAP-TY PE macro in the definition of an MIB (see RFC1215). The
corresponding macro in SMIv2isNOTIFICATION-TY PE. When an application decidesto send anotification, it calls
one of the following functions:

snmpa:send notification(Agent, Notification, Receiver
[, NotifyName, ContextName, Varbinds])
snmpa:send trap(Agent, Notification, Community [, Receiver, Varbinds])

providing the registered name or processidentifier of the agent wherethe M1B, which definesthe notification isloaded
and the symbolic name of the notification.

If thesend_noti fication/ 3, 4 function is used, al management targets are selected, as defined in RFC2273.
The Recei ver parameter defines where the agent should send information about the delivery of inform requests.

If thesend_noti ficati on/5 functionisused, an Not i f yName must be provided. This parameter isused as an
index inthesnnpNot i f yTabl e, and the management targets defined by that single entry is used.

The send_notificati on/ 6 function is the most genera version of the function. A Cont ext Nane must be
specified, from which the naotification will be sent. If this parameter is not specified, the default context (" ") is used.

Ericsson AB. All Rights Reserved.: Simple Network Management Protocol (SNMP) | 13

1.2 Agent Functional Description

Thefunctionsend_t r ap iskept for backwards compatibility and should not be used in new code. Applications that
use this function will continue to work. The snnpNot i f yNane is used as the community string by the agent when
anotification is sent.

Notification Sending

The simplest way to send a notification is to call the function snnpa: send_noti fi cati on(Agent,

Notification, no_receiver). Inthiscase the agent performs a get-operation to retrieve the object values
that are defined in the notification specification (with the TRAP-TYPE or NOTIFICATION-TYPE macros). The
notification is sent to al managers defined in the target and notify tables, either unacknowledged as traps, or
acknowledged as inform requests.

If the caller of the function wants to know whether or not acknowledgments are received for a certain notification
(provided it is sent as an inform), the Recei ver parameter can be specified